import os import cv2 import numpy as np
from tqdm import tqdm
training_data = []
for i in tqdm(range(train.shape[0])):
path = images_path+"/"+train.UID[i]+".jpeg"
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
img = img/255.
img = img.reshape(1,-1) # convert(28*28) =>(784)
= training_data.append([np.array(img),np.array(train['growth_stage'][i])])
len(training_data)
#save the data
np.random.shuffle(training_data)
np.save("training_data.npy",training_data)
#load the data
%time data = np.load("training_data.npy",allow_pickle=True)
len(data)
No comments:
Post a Comment