from keras.preprocessing import image
import os
for i in train["unique_id/name of image "]:
img_path = os.path.join(path,i)
img = image.load_img(img_path,target_size=(224,224))
image.save_img(f"Images_resize224/{i}",img)
dire = ['one','two','three','four','five','six','seven']
for d in dire:
os.mkdir(d)
# to track number of images per class let say 150
growth_stage_count = {}
for d in range(len(dire)):
growth_stage_count.update({d+1:0})
#copy 224*244 images in respective directories
for i,v in enumerate (train["UID"]):
gs = train['growth_stage'].iloc[i]
growth_stage_count[gs]+=1
if growth_stage_count[gs] <=150:
v = v+'.jpeg'
img_path = os.path.join('Images/',v)
print(img_path)
img = image.load_img(img_path,target_size=(224,224))
image.save_img(f"{dire[gs-1]}/{v}.jpeg",img)
No comments:
Post a Comment